Project Controls Expo UK - 13th November 2019

Emirates Arsenal Stadium, London

Benchmarking: Cost Relationship Analysis

H. Lance Stephenson,

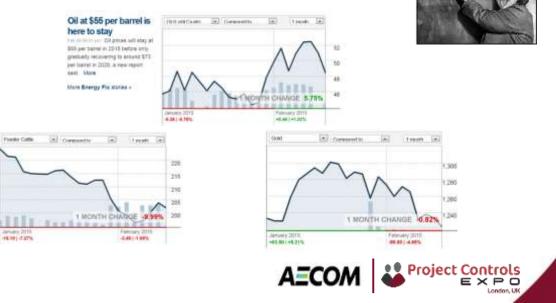
CET CCP FAACE MRICS PMP Director of Operations, AECOM

LANCE STEPHENSON - Biography

Degree / Diploma:

- Bachelors of Business Administration & Diploma in Mechanical Engineering Technology
- Years of Experience:
- 35 years of experience in EPC / Owner Environment
- Director of Operations, AECOM
- Strategic Leader; Tactical Subject Matter Expert in Operational / Capital Program / Project Delivery...

Executed over \$35 BN of projects over my career.



Cost Relationship Analysis

Background

Has the world gone mad...

Background continued...

Due to the volatility of the oil (and all) prices in today's market, it is imperative that companies ensure that their project delivery system is utilized in order to drive improved cost competitiveness.

To further improve competitive outcomes, companies need to improve their understanding of cost drivers and behaviors through historical data collection and benchmarking.

Background continued...

This presentation provides an understanding of some simple approaches in using a cost relationship analysis that can be used to:

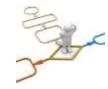
- Support investment decisions
- validate the estimate
- provide a baseline for variance analysis during the project controls phase of the project
- as well as support the completion of a forensic analysis in order to understand the variances from actual costs to estimated costs

Why Do Projects Fail?

A staggering 39% of projects with budgets over US\$10 MM failed. The Standish Group, "CHAOS 2007 REX: A Standish Group Research Exchange." 2007.

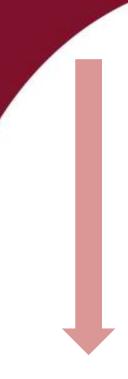
Project Success Factors

- 1. Meet an agreed budget (Cost)
- 2. Deliver on Time (Time)
- 3. Meet quality requirements(Quality)
- 4. Meet the project's objectives / requirements (Scope)


What is Benchmarking?

Benchmarking: Cost Relationship Analysis

What is benchmarking



Benchmarking is the process of comparing one's business processes and performance metrics to:

- industry best or best practices from other companies
- dimensions typically measured are quality, time and cost

In the process of best practice benchmarking, management identifies the best firms in their industry, or in another industry where similar processes exist, and compares the results and processes of those studied (the "targets") to one's own results and processes.

Why do we need to benchmark

- Improve Investment Decision Making for the Company
- Improve Efficiency of a Business Unit
- Improve Efficiency of Overall Project System
- Improve Performance of a Single Project or a Group of Projects
- Improve Selected Performance Metrics (E.g. Productivity)

Key Benchmarking Metrics

From an Client's (Owner) perspective, there are three aspects for cost and schedule performance measures:

1. Cost & schedule competitiveness... how the project did against "similar" projects (which can be compared to industry projects & internal projects).

Cost	Actual Total Project Costs
Competitiveness	Actual "Similar" Project Costs
Schedule	Actual Total Project Duration
Competitiveness	Actual "Similar" Project Durations

Key Benchmarking Metrics

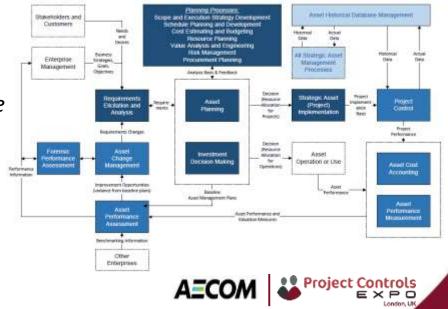
- 2. Cost & schedule factor (efficiency) and,
- 3. Cost & schedule growth (predictability).

Cost Growth	Actual Total Project Cost - Approved Project Cost Approved Project Cost
Cost Factor	<u>Actual Total Project Cost</u> Original Project Cost + Approved Changes
Schedule Growth	Actual Total Project Duration - Approved Project Duration Approved Project Duration
Schedule Factor	Actual Total Project Duration Original Project Duration + Approved Changes

Key Benchmarking Metrics

- 4. Safety and,
- 5. Quality.

TRIF	<u>Total Number of Recordable Cases x 200,000</u>
(Total Recordable Incident Frequency)	Total Site Work-Hours
DART	<u>Total Number of DART Cases x 200,000</u>
(Days Away & Restricted Time)	Total Site Work-Hours


Total Direct Cost of Field Rework

Actual Construction Phase Cost

Strategic Asset Management

... for cost & schedule competitiveness

Cigue Plan

Emecune

Strategic Asset Management

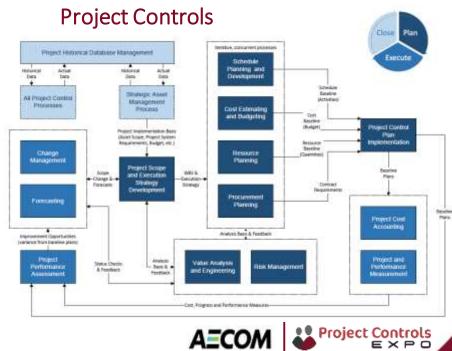
Asset historical database management is a process for:

• Collecting; maintaining; and analyzing *asset* historical information

so that it is ready for use by the other strategic asset management processes and for project control.

Without empirical data, the quality of output of these types of methods is greatly diminished and it is much more likely that inappropriate investment decisions will be made. (From TCM Framework)

Strategic Asset Management

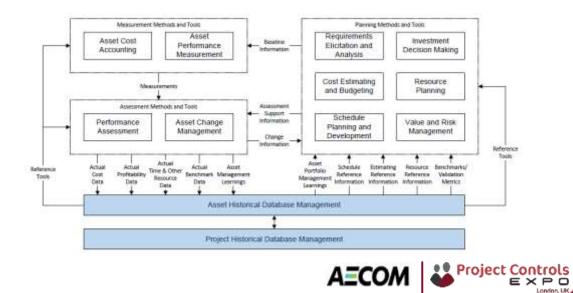

An example, the average cost to build a SAGD Central Processing Facility project in Alberta for a production unit of 30,000 barrels per day is approximately \$2.250 Billion...(excludes well pad facilities and steam / gathering lines)

ROI on a \$120/barrel of WTI is different than the ROI on a \$52/barrel of WTI...

... for cost & schedule efficiency and predictability

London, UK

Project Controls


Project historical database management is a process for:

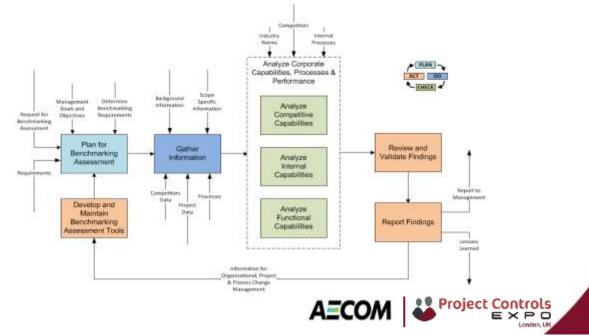
Collecting; maintaining; and analyzing *project* historical information

so that it is ready for use by the other project control processes and for strategic asset management.

Asset Management and Project Controls Integration...

Requirements for Benchmarking

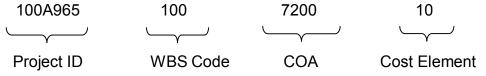
Benchmarking: Cost Relationship Analysis



Requirements for Benchmarking

Benchmarking Plan Process Map

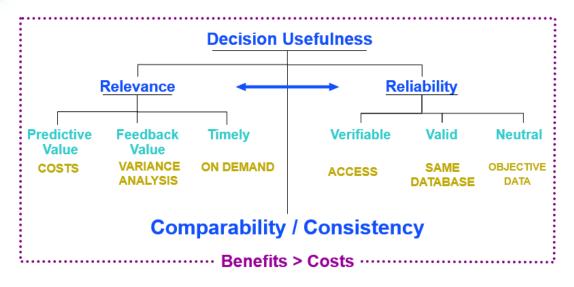
Requirements for Benchmarking


Planning topics may include, but are not limited to, the following:

- roles and responsibilities
- allocated resources
- collection methods (during the project and at closeout)
- data structure and format (i.e., work breakdown or cost code structure)
- level of detail and comprehensiveness of records
- data and record quality
- storage and maintenance (tools and systems)
- access and retrieval (methods and access rights)
- analysis methods (where applicable)
- information product quality (data validation)
- legal issues (retention, claims issues, etc.)

Coding Structures

Codes can used as identifiers for client coding or WBS coding requirements


Coding Structures continued...

The communication or systems plan should include how information will be mapped throughout the systems; the data collection cut off times as well as synchronization times.

- Work breakdown structure (WBS)
- Organization breakdown structure (OBS)
- Cost breakdown structure (CBS)
- Schedule of pay value (SOPV) structure
- Project control accounts / Accounting structures
- Code or chart of accounts
- Resource classifications
 - Balance sheet / General ledger
 - Taxation and depreciation
- Cost classifications, cost types

Level of Detail

Categories

Summary ID	Description
PD	Project Definition
PM	Project Management
CM	Construction Management
DE	Detailed Engineering
BM	Tagged Equipment & Bulk Materials
CL	Construction Labour
SU	Start Up

Subcategories

Code	Description	Summary ID	Deliverables / Espectations
A0.01.01	Business Development (BD)	PM	Signed Commercial Contract, Interconnection Agreement, Board / Internal Funding Memo, Finanzial / Economic Review
A0.01.02	Project Management	PM	Project Execution Plan, System Operability Philosophy & Review Project Scope Definition Review, Process Hazard Assessment, RPPs,
A0.01.03	Project Controls (Cost, Planning & Scheduling)	PM	Control Budget, Basis of Estimate, Master Schedule, Basis of Schedule, Overall Cost & Schedule Reporting
A0.01.04	Construction & Quality Management	CM	Constructability Reviews, Estimate Cold Eye Review, Contrast Bid Review
A0.01.05	Field Inspection	CM	Field Inspection & Reporting
A0.01.06	Site Services - Construction	CM	Site Project Controls, Change Management, Involce Reviews & 38.M Management
A0.01.07	Field Commissioning	- 50	C N S S S S S S S S S S S S S S S S S S
A0.01:08	Seferty	CM	Safwty Plan
A0.01.09	Procurement (Material Purchasing)	8M	Procumment Plan, MR Review, Commercial Sid Tab Reviews
A0.01.10	Procurement (Contracts)	PM	Contracts Plan, Contract Formulation, Contract Bid Review
40.01.11	Engineering Services	DE	
A0.01.12	Others (internal)	PM	For Internal cost breakdowns, includes these departments/function groups; Accounting, law, etc.
A6.01.13	Engineering	DE	Design Basis Memorandum, Engineering Design Specification, System Technical Assessment Review, Design review
AD:01.14	Construction	α	Construction Labour, Equipment and Contractor Supplied Bulk Maturials
A0.01.15	Motertals	M6	Supplied Tagged Equipment and Bulk Materials
A0.01.16	Others	CM	includes insurance, travel and meal, contingency

London, UK

Typical System Schematic

Collection Forms

HISTORICAL PROJECT SYSTEM

SHSTORM3 - ONSWLLTFICECTTACTISTEET

##5450711881		##031E121E18	
PRIMARY PROCESS IS B	10 mm 10 mm 20 mm 20	Enter Nama of Latt Parconce Each Accognised	Departmenter
FRAME FRAME ASSOCIATE	PEGLET MUSICE		2
10-bit fe be unbaftitette Conatege	INCOUT HANGESTENDARD		
	CONTINUCTION HANA DRI		
	PERMIT CONTRACT		
	filments.		

and the second			CHEROLL PROMER C	INTERALE
TITLE OF THE OWNER OF THE OTHER		IN LOTS	Contractory of the	and also have be delivered at the Propertyland 1 Thorough Game B
		Kront associate 1.04		1
st-etc.ce	Arrest Real	AccelConpara	-Manager & and price	Mana an Canagana' is the phonon data is entry and phonon data diseases to the MC (about a constitute)
PEL -PPELIECT EXPlantions			13	Bran at Dany I - Lampiner at Gare #
TEL CONCEPTION DETRING				n - Bear as Brani & - Bear plant at Gass ?
FEL + BACKCORDINA				1 - Bani at Dani I - Streigten af Only 8
HET CALED ENGINEERING (DEDKIN		-	10	1 - Since at Gater 8 - Scingtree activity of Last 495 Meetings
0.049 10 80.007 5004				- the adaptrates that - longing a branchist bagain
COMMENTERIOR OF C			1.1	- The distriction and an and a second participation of the second

AECOM London, UK

Analyze and Apply

Benchmarking: Cost Relationship Analysis

Typical Historical Data Formulas for Analysis

End Product/Use	Common Relationships	Example Calculations	Units
Rough Order of Magnitude Cost Estimating Relationships	Cent-Cost	DFL-S / DFM-S Total-S / Equipment-S	5
	Labor-Cnit	DFL-brs / Equipment-S HO-brs / Total-S	hr/s
Mpmt. Perf./Quality Review Client Perf./Quality Review	Cost-Labor	DFL-5 / DFL-fws-5 HO-5 / HO-fm	\$/h
Estimating Took Est. Dotabase Colibration Capital Mant. Forecasting	Cost-Deliverable or Output	Total Concrete-S / Total CV Total-S / Output Capacity	\$/ unit
orderen sellent sentresende	Labor-Labor	Process Eng-hrs / Total Eng-hrs HO-hrs / DFL-hrs	16
	Labor-Deliverable	DFL-hrs / Piece of Equipment Eng-hrs / Drawings	hrs/ unit
Rough Order of Magnitude Schedule Development	Time-Cost	Construction Days / TFC-\$ Eng, Design Days / HOC-\$	day (S
Relationships	Time-Deliverable or Output	Debug Days / No. Equipment Pieces Eng, Design Days / No. Owgs	day/ unit
Mprit. Perf,/Guality Review	Time-Labor	Constr. Days / DFL-hrs Eng, Design Days / HO-hrs	dey /
Client Perf./Quality Review Planning Tools	Time Time	Front End Days / Total Days Eng. Design Days / Constr. Days	- 16
Performance and Quality Measurement	Labor Efficiency Labor-Labor	Actual-brs / Budget-brs	*
(Indices and Benchmarks)	Rework Cost-Cost or Time-Time	Rework-5 / Total-5 Rework days / Total Days	5
Mant. Perf,/Quality Review Client Perf,/Quality Review	Change Management. Cost-Cost or Time-Time	Non-scope Change-S / Total-S Scope Change days / Total Days	36
Estimating Tools Est. Database Calibration Capital Marnt. Forecasting	Capacity Achieved Output-Output	Actual Units / Name plate Units	- 54
Planning Tools	Indices Any Ratio-Process Measure	Rework-% / New Process Steps	5
	Same as ROM Est. & Sched., but mostly Cost, Labor, Time / Deliverable	Change % / FEL Index"	x/ unit

Table from 1995 AACE TRANSACTIONS, Project History -Closing the Loop, John K. Hollmann, PE CCP

Project Con

Standard Summary Estimate

	Qty	NON	Avg. Prod. Rate	Total Labour Hrs	Total Labour Cost	Expenses	Fabrication	Bulks	Equipment	Total Costs
Project Definition	1	Lot		29,760.33	\$8,184,091	\$1,250,000				\$9,434.091
Engineering	1	Lot		107,350.02	\$26,087,128	\$750,000				\$26,837,128
Project Management	1	Lot		62,585.25	\$12,517,050	\$2,125,000				\$14,642,050
Construction Supervision	1	Lot.		71,250.00	\$14,250,000	\$852,100				\$15,102,100
Other Construction (Temp Fac./Equip.)	1	Lot.		12,250.00	\$1,347,500	\$9,049,757				\$10,397,257
Direct Labour & Materials										
Excavations	13,500	CM	0.04	540.00	\$54,663			\$851,032		\$905,695
Pilling	102	EA	30	3,060.00	\$318,137		\$306,000	\$1,587,455		\$2,211,592
Concrete	11,250	CM	2.12	23,850.00	\$2,384,857		\$632,813	\$4,787,054		\$7,804,723
Structural Steel	117,750	KG.	0.095	11,186.25	\$1,162,995		\$1,177,500	\$6,613,225		58,953,721
Buildings	26	EA	200	5,100.00	\$539,538		\$6,001,248			\$6,540,786
Equipment										
Mechanical	57	EA	300	17,100.00	51,832,354			\$815,572	\$17,125,641	\$19,773,367
Electrical	7	EA	150	1,050.00	\$118,172			\$407,786	\$7,830,095	\$8,356,053
Piping										
Meters	13,350	LM	5.5	73,425.00	\$7,657,388			\$12,464,069		\$20,121,457
Avg. Diam	11,250	Dia. Inch	10	112,500.00	\$11,732,464		\$5,250,000			\$16,982,464
Electrical										
Meters	23,625	LM	2.65	62,606.25	57,046,013			\$8,776,265		\$13,822,278
Terminations	3,750	EA	1.25	4,687.50	\$527,554			\$301,407		\$828,961
Instrumentation (I/O)	6,750	EA	1.35	9,112.50	\$1,055,307				\$443,247	\$1,498,554
Start Up	1	Lot	100111-02	7,550.00	\$2,265,000	\$1,035,174			1.0001.016	\$3,300,174
				614,963.10	\$99,080,211	\$15,062,031	\$13,367,561	\$36,603,866	\$25,398,983	\$189,512,652

Data collection

Project Values

Total Directs % of Total Hours Total Indirects % of Total Hours Total Civil, Struct. % of Total Hours Total Mechanical & Piping % of Total Hours

Total Electrical & Instrumentation % of Total Hours

Time Categories vs. Total Hours

Straight Time % of Total Hours Overtime Time % of Total Hours Travel Time % of Total Hours

Supervision

Total CM % of Total Hours Total Superintendents % of Total Hours Total General Foreman % of Total Hours Total Trade Foreman % of Total Hours **Field Installation** Excavation Backfill Cut & Capping Concrete Steel Erection Module Setting **Process Equipment Pipe Installation Pipe Hydrotest** Pipe Interconnects **Pipe Insulation** Glycol Tracing Cable Tray Cable Pull Terminations EHT Lighting Grounding Instrumentation

Measure hours/m3 hours/m3 hours/ea hours/m3 hours/kg hours/ea hours/ea hours/Im hours/Im hours/ea hours/Im hours/Im hours/Im hours/Im hours/ea hours/Im hours/ea hours/Im hours/ea

AECOM

Cost Relationship Analysis

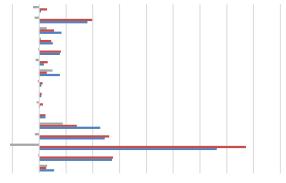
			Company Data				industry	Data
		N iles	Avg	Max	Estimate	Var	Avg	Var
Total Project S	/ Material \$	2.38	4,97	5.98	1,06	-35%	4.00	-37%
Total Field Costs	/ Material \$	1.65	3,45	4.79	2.24	-35%	3.59	-38%
Total Office Cests	/ Matariai S	0.51	1.21	1.72	0.82	-32%	1.18	-30%
Project Management S	/ Total Project S	0.022	0.043	0.065	0.077	80%	0.046	68%
Project Management \$	/ Total Field Costs	0.009	0.063	0.099	0.186	68%	0.064	65%
Project Management \$	/ Total Office Costs	0.352	0.233	0.320	0.288	23%	0.212	36%
Project Management \$	/ Material 5	0.190	0.295	0.452	0.236	-20%	0.241	-2%
Engineering 5	/ Total Project \$	6.322	0.168	0.272	0.142	-16%	0.189	-25%
Engineering \$	/ Total Field Costs	0.34L	0.243	0.342	0.194	-20%	0.262	-26%
Engineering \$	/ Total Office Costs	0.420	0.690	0.880	0.527	-24%	0.779	-32%
Engineering S	/ Material \$	0.813	1.010	2.000	0.433	-58%	1.020	-58%
Total Office Costs	/ Total Project \$	0.162	0.231	0.292	0.269	16%	0.229	17%
Total Office Costs	/ Total Field Costs	0.190	0.310	0.550	0.367	1.0%	0.319	15%
Total Field Costs	/ Total Project \$	0,560	0.710	0.898	0,731	3%	0.783	-7%
Total Field Labour	/ Total Project \$	0.272	0.362	0.521	0.182	-30%	0.362	-50%
Material - Bulks	/ Total Project \$	0,302	0.481	0,691	0.295	-60%	6.419	-54%
Total Field Labour	/ Total Field Costs	0.282	0.485	0.590	0.248	-49%	0.466	-47%
Material - Bulks	/ Total Field Costs	0.291	0.550	0.817	0.784	-52%	0.534	-51%
Total Field Indirects	/ Total Field Costs				0.184			
Total Field Labour	/ Material - Sulks	0.510	1.125	1.721	3.786	237%	0.960	286%
Material \$	/ Total Project \$	0.096	0.223	0.572	0.127	47%	0.251	30%
Material 5	/ Total Field Costs	0.125	0.304	0.632	0.447	47%	0.304	47%
Material S	/ Total field Indirects				2.432			
Start Up \$	/ Total Project \$	0,000	0.034	0.158	0.017	-49%	0.033	-47%
Start Up \$	/ Total Field Costs	0.000	0.051	0.111	0.024	-53%	6.047	-49%
Start Up S	/ Material \$	0.000	0.171	0.632	0.053	-09%	0.169	-69%

AECOM

Project Controls

Preparing Final Project Report

- Authorization document (AFE)
- Project objectives document
- Business justification document
- Project Execution Plan document(s)
- Team Organization Chart
- RACI chart, if available
- Risk Register / Change Log & Change Orders
- Value Improving Practices documentation (Constructability review sessions, value engineering sessions, etc.)
- Process flow diagram (can be block flow), plot plans, and route map for pipeline projects



Analysis

	Estimate	Actuals
Task Codes vs. Total Installed Costs		
Business Development (BD) % of Total Installed Costs	0.34%	1.48%
Project Management (Internal) % of Total Installed Costs	9.01%	9.88%
Project Controls (Cost, Planning & Scheduling) % of Total Installed Costs	4.16%	2.75%
Construction & Quality Management % of Total Installed Costs	2.55%	2.24%
Field Inspection % of Total Installed Costs	3.85%	4.04%
Site Services - Construction % of Total Installed Costs	0.90%	1.57%
Field Commissioning % of Total Installed Costs	3.87%	1.40%
Safety % of Total Installed Costs	0.41%	0.65%
Procurement (Material Purchasing) % of Total Installed Costs	0.42%	0.45%
Procurement (Contracts) % of Total Installed Costs	0.17%	0.69%
Engineering Services % of Total Installed Costs	1.18%	1.15%
Others (Internal) % of Total Installed Costs	11.38%	7.00%
Engineering % of Total Installed Costs	12.24%	13.04%
Construction % of Total Installed Costs	33.14%	38.58%
Materials (Enbridge Supplied) % of Total Installed Costs	13.61%	13.79%
Others (External) % of Total Installed Costs	2.78%	1.31%

Variance Analysis

Business Development (BD) % of Total Installed Costs Project Management (Internal) % of Total Installed Costs Project Controls (Cost, Planning & Scheduling) % of Total Installed Costs Construction & Quality Management % of Total Installed Costs Field Inspection % of Total Installed Costs Site Services - Construction % of Total Installed Costs Field Commissioning % of Total Installed Costs Safety % of Total Installed Costs Procurement (Material Purchasing) % of Total Installed Costs Procurement (Contracts) % of Total Installed Costs Engineering Services % of Total Installed Costs Others (Internal) % of Total Installed Costs Engineering % of Total Installed Costs Construction % of Total Installed Costs Materials (Enbridge Supplied) % of Total Installed Costs Others (External) % of Total Installed Costs

 $-10\% \ -5\% \ 0\% \ 5\% \ 10\% \ 15\% \ 20\% \ 25\% \ 30\% \ 35\% \ 40\% \ 45\%$

Project Controls

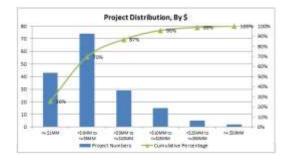
AECOM

Variance Actuals Estimate

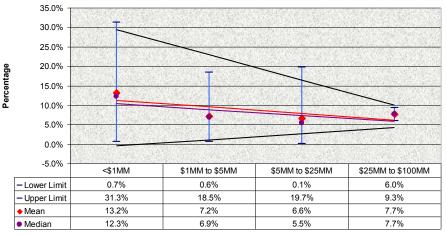
An increase in Construction costs by 5%, but only an increase of <1% in bulk and equipment costs

Why the increase?

Portfolio Analysis


Average Value

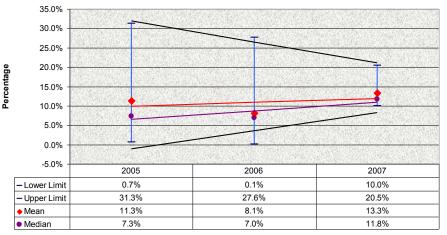
■ >= \$50MM


Portfolio Analysis

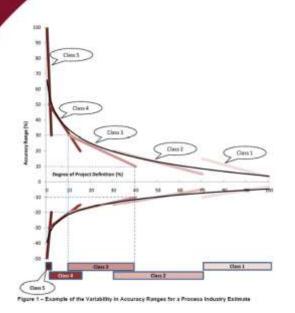
Project Characteristics	Number of Records	Average Value	MIN	MAX	Median		Standard Deviation		Relative Factor to
					Value d	% e×d/a	Value f	% g-t/a	Median f = line value d / overall d
Project Status									
Mechanically Complete	53	\$9,197	\$122	\$74,536	\$4,198	45.6%	\$14,494	157.6%	1.53
Closed	115	\$3,886	\$24	\$33,708	\$1,860	47.9%	\$5,445	140.1%	0.68
Project Size									-
<= \$1MM	43	\$452	\$24	\$978	\$392	86.8%	\$299	66.1%	0.14
>\$1MM to <=\$5MM	74	\$2,588	\$1,063	\$4,852	\$2,415	93.3%	\$1,147	44.3%	0.88
>\$3MM to <=\$10MM	29	\$6,656	\$3,970	\$9,805	\$6,433	96.6%	\$1,341	20.1%	2.34
>510MM to <=\$25MM	15	\$15,368	\$10,562	\$21,639	\$14,788	96.2%	\$3,695	24.0%	5.37
>\$25MM to =\$50MM	3	\$32,419	\$29,334	\$37,700	\$30,771	94.9%	\$3,360	10.4%	11.18
>> \$50MM	2	\$68,869	\$63,202	\$74,536	\$68,869	100.0%	\$8,014	11.6%	25.03
Execution Category									
Category 1	91	\$2.111	\$24	\$7,462	\$1,209	\$7.3%	\$2,097	99.4%	0,44
Category 2	32	\$11,461	\$148	\$74,536	\$5,409	47.2%	\$15,145	132.1%	1.97
Category 3	9	\$7,893	\$687	\$21,639	\$3,218	40,8%	\$8,262	104.7%	3.17
Category 4	6	\$10,222	\$3,468	\$15,875	\$10,894	106.6%	\$4,692	45.9%	3.96
Category 5	22	\$6,032	\$1,210	\$37,700	\$3,841	63.7%	\$7,724	128.0%	1.40
Category 6	5	\$7,697	\$1,302	\$18,095	\$5,144	66.5%	\$6,751	\$7.7%	1.87
Category 7	3	\$23,986	\$3,970	\$63,202	\$4,787	20.0%	\$33,964	141.6%	1.74

AECOM

London, UK


Trend Analysis Total % Engineering of TIC by Size

Values


Trend Analysis Total % Engineering of TIC by Year

Values

Benchmarking and Accuracy Ranges

- Level of non-familiar technology in the project.
- Complexity of the project.
- Quality of reference cost estimating data.
- Quality of assumptions used in preparing the estimate.
- Experience and skill level of the organization / personnel.

Benchmarking improves competitive outcomes and provides companies in understanding their cost drivers and behaviors.

Benchmarking provides:

- Support investment decisions & improvement strategies
- Estimate analysis and validation
- Baseline for variance analysis during the project controls phase of the project
- A forensic analysis in order to understand the variances from actual costs to estimated costs
 AECOM
 Project Controls

Learning from Experience

FX

London, Ul

Learning from Experience

EXP

London, UK

Learning from Experience

Become a Learning Organization through Benchmarking?

To compete successfully — achieve superior performance.

To improve your customer satisfaction / customer relations.

To improve productivity. To improve quality.

For further information regarding this presentation, please contact:

Lance Stephenson Director of Operations AECOM

Phone: +01 780 667-2678

lance.stephenson@aecom.com

Connect with me on LinkedIn!!!

